If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+10w-65=0
a = 1; b = 10; c = -65;
Δ = b2-4ac
Δ = 102-4·1·(-65)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{10}}{2*1}=\frac{-10-6\sqrt{10}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{10}}{2*1}=\frac{-10+6\sqrt{10}}{2} $
| 12-(6-1)=12-6-n | | 12-(5)=12-6-x | | 12+t÷3=17 | | x-3=-x | | (x^2)+x-49.5=0 | | 5y+7y=28 | | 7-2r=5 | | 7-2r=-5 | | -6-5(5-3)=-6-5-x | | 5x+6=2x-10 | | 4−5x=15−(6x+3) | | 28=-7/6y | | 6.3x=12.6 | | -4m+7=-43 | | 0.8*(1+x)=1.5 | | 5n+1*20=1070 | | 9m−4(2m−6)=19 | | 2+(3x0)=2 | | 2+3x0=2 | | 7/32=1/x | | 2x{3x+2}-10=4x+14 | | -1/x+1/5=8/x | | 1/2(4x+16)=20 | | (4x+7)/15=(6x+2)/10 | | 4/7{21/8+1/2}=-2{1/7-5/28x} | | x-22=-49 | | x+22=-49 | | 5(8-x)=30 | | 1998=2^x | | 16t^-36t+17=0 | | x-56=-17 | | 3b+5=20+b=3b-b=20-5=2b=25=b=20÷2=b=10 |